Nokia Customer Care

Service Manual

RH-109 (Nokia 1606Arte; L3&4) Mobile Terminal

Part No: (Issue 2)

COMPANY CONFIDENTIAL

NOKIA Care

Copyright © 2008 Nokia. All rights reserved.

Amendment Record Sheet

Amendment No	Date	Inserted By	Comments
Issue 1	2008.05.13	Michelle Wang	Initial draft
Issue 2	2008.07.17	Michelle Wang	Updated version

Copyright

Copyright © 2008 Nokia. All rights reserved.

Reproduction, transfer, distribution or storage of part or all of the contents in this document in any form without the prior written permission of Nokia is prohibited.

Nokia, Nokia Connecting People, and Nokia X and Y are trademarks or registered trademarks of Nokia Corporation. Other product and company names mentioned herein may be trademarks or tradenames of their respective owners.

Nokia operates a policy of continuous development. Nokia reserves the right to make changes and improvements to any of the products described in this document without prior notice. Under no circumstances shall Nokia be responsible for any loss of data or income or any special, incidental, consequential or indirect damages howsoever caused.

The contents of this document are provided "as is". Except as required by applicable law, no warranties of any kind, either express or implied, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose, are made in relation to the accuracy, reliability or contents of this document. Nokia reserves the right to revise this document or withdraw it at any time without prior notice.

The availability of particular products may vary by region.

IMPORTANT

This document is intended for use by qualified service personnel only.

Warnings and cautions

Warnings

- IF THE DEVICE CAN BE INSTALLED IN A VEHICLE, CARE MUST BE TAKEN ON INSTALLATION IN VEHICLES FITTED WITH ELECTRONIC ENGINE MANAGEMENT SYSTEMS AND ANTI-SKID BRAKING SYSTEMS. UNDER CERTAIN FAULT CONDITIONS, EMITTED RF ENERGY CAN AFFECT THEIR OPERATION. IF NECESSARY, CONSULT THE VEHICLE DEALER/MANUFACTURER TO DETERMINE THE IMMUNITY OF VEHICLE ELECTRONIC SYSTEMS TO RF ENERGY.
- THE PRODUCT MUST NOT BE OPERATED IN AREAS LIKELY TO CONTAIN POTENTIALLY EXPLOSIVE ATMOSPHERES, FOR EXAMPLE, PETROL STATIONS (SERVICE STATIONS), BLASTING AREAS ETC.
- OPERATION OF ANY RADIO TRANSMITTING EQUIPMENT, INCLUDING CELLULAR TELEPHONES, MAY INTERFERE WITH THE FUNCTIONALITY OF INADEQUATELY PROTECTED MEDICAL DEVICES. CONSULT A PHYSICIAN OR THE MANUFACTURER OF THE MEDICAL DEVICE IF YOU HAVE ANY QUESTIONS. OTHER ELECTRONIC EQUIPMENT MAY ALSO BE SUBJECT TO INTERFERENCE.
- BEFORE MAKING ANY TEST CONNECTIONS, MAKE SURE YOU HAVE SWITCHED OFF ALL EQUIPMENT.

Cautions

- Servicing and alignment must be undertaken by qualified personnel only.
- Ensure all work is carried out at an anti-static workstation and that an anti-static wrist strap is worn.
- Ensure solder, wire, or foreign matter does not enter the telephone as damage may result.
- Use only approved components as specified in the parts list.
- Ensure all components, modules, screws and insulators are correctly re-fitted after servicing and alignment.
- Ensure all cables and wires are repositioned correctly.
- Never test a mobile phone WCDMA transmitter with full Tx power, if there is no possibility to perform the measurements in a good performance RF-shielded room. Even low power WCDMA transmitters may disturb nearby WCDMA networks and cause problems to 3G cellular phone communication in a wide area.
- During testing never activate the GSM or WCDMA transmitter without a proper antenna load, otherwise GSM or WCDMA PA may be damaged.

For your safety

QUALIFIED SERVICE

Only qualified personnel may install or repair phone equipment.

ACCESSORIES AND BATTERIES

Use only approved accessories and batteries. Do not connect incompatible products.

CONNECTION TO OTHER DEVICES

When connecting to any other device, read its user's guide for detailed safety instructions. Do not connect incompatible products.

Care and maintenance

- This product is of superior design and craftsmanship and should be treated with care. The suggestions below will help you to fulfill any warranty obligations and to enjoy this product for many years.
- Keep the phone and all its parts and accessories out of the reach of small children.
- Keep the phone dry. Precipitation, humidity and all types of liquids or moisture can contain minerals that will corrode electronic circuits.
- Do not use or store the phone in dusty, dirty areas. Its moving parts can be damaged.
- Do not store the phone in hot areas. High temperatures can shorten the life of electronic devices, damage batteries, and warp or melt certain plastics.
- Do not store the phone in cold areas. When it warms up (to its normal temperature), moisture can form inside, which may damage electronic circuit boards.
- Do not drop, knock or shake the phone. Rough handling can break internal circuit boards.
- Do not use harsh chemicals, cleaning solvents, or strong detergents to clean the phone.
- Do not paint the phone. Paint can clog the moving parts and prevent proper operation.
- Use only the supplied or an approved replacement antenna. Unauthorized antennas, modifications or attachments could damage the phone and may violate regulations governing radio devices.

All of the above suggestions apply equally to the product, battery, charger or any accessory.

ESD protection

Nokia requires that service points have sufficient ESD protection (against static electricity) when servicing the phone.

Any product of which the covers are removed must be handled with ESD protection. The SIM card can be replaced without ESD protection if the product is otherwise ready for use.

To replace the covers ESD protection must be applied.

All electronic parts of the product are susceptible to ESD. Resistors, too, can be damaged by static electricity discharge.

All ESD sensitive parts must be packed in metallized protective bags during shipping and handling outside any ESD Protected Area (EPA).

Every repair action involving opening the product or handling the product components must be done under ESD protection.

ESD protected spare part packages MUST NOT be opened/closed out of an ESD Protected Area.

For more information and local requirements about ESD protection and ESD Protected Area, contact your local Nokia After Market Services representative.

Battery information

Note: A new battery's full performance is achieved only after two or three complete charge and discharge cycles!

The battery can be charged and discharged hundreds of times but it will eventually wear out. When the operating time (talk-time and standby time) is noticeably shorter than normal, it is time to buy a new battery.

Use only batteries approved by the phone manufacturer and recharge the battery only with the chargers approved by the manufacturer. Unplug the charger when not in use. Do not leave the battery connected to a charger for longer than a week, since overcharging may shorten its lifetime. If left unused a fully charged battery will discharge itself over time.

Temperature extremes can affect the ability of your battery to charge.

For good operation times with Li-Ion batteries, discharge the battery from time to time by leaving the product switched on until it turns itself off (or by using the battery discharge facility of any approved accessory available for the product). Do not attempt to discharge the battery by any other means.

Use the battery only for its intended purpose.

Never use any charger or battery which is damaged.

Do not short-circuit the battery. Accidental short-circuiting can occur when a metallic object (coin, clip or pen) causes direct connection of the + and - terminals of the battery (metal strips on the battery) for example when you carry a spare battery in your pocket or purse. Short-circuiting the terminals may damage the battery or the connecting object.

Leaving the battery in hot or cold places, such as in a closed car in summer or winter conditions, will reduce the capacity and lifetime of the battery. Always try to keep the battery between 15°C and 25°C (59°F and 77°F). A phone with a hot or cold battery may temporarily not work, even when the battery is fully charged. Batteries' performance is particularly limited in temperatures well below freezing.

Do not dispose of batteries in a fire!

Dispose of batteries according to local regulations (e.g. recycling). Do not dispose as household waste.

Company Policy

Our policy is of continuous development; details of all technical modifications will be included with service bulletins.

While every endeavour has been made to ensure the accuracy of this document, some errors may exist. If any errors are found by the reader, NOKIA MOBILE PHONES Business Group should be notified in writing/e-mail. Please state:

- Title of the Document + Issue Number/Date of publication
- Latest Amendment Number (if applicable)
- Page(S) and/or Figure(s) in error

Please send to: NOKIA CORPORATION Nokia Mobile Phones Business Group Nokia Customer Care PO Box 86 FIN-24101 SALO Finland E-mail: <u>Service.Manuals@nokia.com</u>

Nokia 1606Arte Service Manual Structure

- 1. General information
- 2. Service Devices and Service Concepts
- 3. BB Troubleshooting and Manual Tuning Guide
- 4. RF Troubleshooting
- 5. System Module Description Glossary

Nokia Customer Care

1 – General information

Table of Contents

Product selection	1-5
Phone features	1-5
User interface and software features	1-6
Accessories	1-6
Technical specifications	1-6
General specifications	1-6
Battery endurance	1-6

List of Figures Figure 1 RH-109 (Nokia 1606Arte) product picture.....1-5

Product selection

Rh-109 (Nokia 1606) is a CDMA200 triple band phone, supporting CDMA2000 1Xrtt /Cell/PCS/AWS bands.

Figure 1 RH-109 (Nokia 1606Arte) product picture

Phone features

Display and keypad features

- 1.77" 128x160 pixel, 262k true color internal display
- 0.97" 96x32 pixel, white monochrome external display
- 5-way , navi-key (4 way scroll and center key, call and end keys with intelligent key light+)

Hardware features

- Micro USB port for charging and data transfer (USB 2.0+)
- 2.5 phi dedicate headset
- Internal vibrator and antenna
- Internal 512Mb memory
- Torch feature in power on/off
- Support E911

RF features

- CDMA2000 1Xrtt: Cell/PCS/AWS
- AGPS/SGPS: E911 feature only

User interface and software features

Selection of software applications and services

- 3GPP streaming / downloading videq
- Themes (wallpapers, icons, colors+
- Music Player supporting MP3,Midi, QCELP and EVRC
- 0MA DRM 1.0
- OMA MMS 1.2, MMS Conformance 3.0, AMR and SMIL
- OMA Client Provisioning v1.3
- MP3 ringing tones, true tones and MIDI ringing, alert and gaming tones with support of 64 polyphone
- HTTP 1.1/WAP2.0
- Nokia PC Suite

Accessories

Sales package contents

- Nokia 1606 phone
- Nokia Battery BL-4B
- Nokia Charger: AC-6,
- User Guide

Technical specifications

General specifications

Unit	Dimension(mm)	Weight(g)	Volume(cc)
Transceiver with BL-4B 700mA	85x45x16.5	76	48
Li-Ion battery pack			

Battery endurance

Battery	NMP Talk time	NMP Standby time
BL-4B 700mAh Li-Ion battery	Up to 3.5 hours	10 days

Note: The variation in operation times will occur depending on network parameters, phone setting and usage.

Nokia Customer Care

2 – Service Devices and Service Concepts

Table of Contents

Service Devices	2-5
Product specific devices	2-5
MJ-199	2-5
RJ-230	2-5
SS-179	2-5
Cables	2-5
CA-128RS	2-5
PCS-1	2-6
Service concepts	2-6
POS (Point of Sale) flash concept	2-6
SW download	2-7
Introduction	2-7
Operation guide	2-7
Single bundle download tool	2-7
Multi bundle download tool	2-8
Single download tool	2-10
Died phone revive tool	2-11

Service Devices

Product specific devices

The table below gives a short overview of service tools that can be used for testing, error analysis and repair of product RH-109, refer to various concepts.

MJ-199	Module Jig		
This device holds the PWB during testing. It has a serial port interface to connect to the service software.			
RJ-230	Universal Soldering Jig		
RJ-230 is a soldering engine module.	jig used for soldering and as a r	ework jig for the	
SS-179	Domesheet Alignment Jig		
This jig is used wher correct alignment.	n replacing the domesheet on th	e PWB to ensure	

Cables

The table below gives a short overview of service tools that can be used for testing, error analysis and repair of product RH-109, refer to various concepts.

	CA-128RS	RF cable	
	The RF cable is used to c	onnect, for example, a module	repair jig to
	the RF measurement equ	uipment.	
(Attenuation for:		
	• Cell band: 0.51		
	• PCS band: 0.85		
	• AWS Tx band: 0.75		

0	PCS-1	Power cable	
	The PCS-1 power cat or a control unit to s	ole (DC) is used with a docking s upply a controlled voltage.	tation, a module jig

SW Update

POS (Point of Sale) flash concept

Туре	Description
Product specific tools	
BL-4B	Battery
Other tools	
РК-85	USB dongle
	PC with PST software
Cables	
CA-101	USB connectivity cable

Software download

Introduction

Purpose

The purpose of this section is to show the PST download tool operation steps. User can follow the operation sequence, step by step, to complete the image downloading procedure. This section also shows users what should be careful during downloading.

Scope

This section will show the operations sequence of Single bundle downloading, multi-bundle downloading and single download tool with dead phone revive function.

Definitions, Acronyms, and Abbreviations

PST	Product Service Tool / Product Support Tool
СРС	Customer Product Code / Customer Protect Code
MSI	Microsoft Installer

Reference

http://msdn2.microsoft.com/en-us/library/wtzawcsz(VS.80).aspx

Operation guide

Requirements and Notices

- USB Driver : Before using those tools, user should install the USB driver firstly then connect phone to PC to register phone into PC or the PC can't identify the phone. User can open device manager to check your phone can be identified by PC or not.
- PST Tool : These tools are included in PST tool and can't be used or started without launching from PST tool. Please get valid PST tool packet from the vendor or legal web-site.
- MSI image : Before starting downloading, user should get valid image packet from your vendor or legal web-site. During download, please don't plug-out USB cable or any other USB devices to avoid PC unstable issues.

Single bundle download tool

- Power on phone and connected to computer via USB cable.
- Launch PST tool then select Single Bundle Download Tool by clicking "Bundle Downloader" button on "Downloader" page. Make sure the CPC is not empty on "Phone info" page before switching to "Downloader" page.
- Select Proper image version from the dropdown menu. If the dropdown menu shows "No valid images", it means you don't install proper MSI image packet or the CPC code is empty. Please check it and re-starting again.
- Make sure the COM port number on the left-bottom un-edit field is the same as you see from device manager then clicking "FLASH" button to start downloading.

- The progress bar will show the downloading progress and messages during downloading, please wait
 programming is completed when "Download Finished" message box pop-up and the progress bar color
 becomes green.
- Close tool by clicking "Exit" button.

Image Version	Must be chosen manually. It lists the image version that user installed on this computer and which version user wants to download to phone.
Format EFS	It's an option that formatting the phone file system without User Data backup/restore during downloading.
Check Battery	It's an option that check connected battery level before starting downloading images into phone to protect downloading procedure.

11. (1 . 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	Download Control	and Settings	
FLASH	Image Version :	PN_3101B_GEN	•
		PN_2700B_GEN	~
0100		PN_2801B_GEN	
STUP		PN_2901B_GEN	
	- Format EFS	PN_3000B_GEN	
		PN_3101B_GEN	
Exit	Check Battery		~
wnload Information			
		8000	
87		Idle	

Multi bundle download tool

- Power on phones and connected them to computer via USB cable.
- Launch PST tool then select Multi-Bundle Download Tool by clicking "Multi Downloader" button on "Downloader" page. Make sure the CPC is not empty on "Phone info" page before switching to "Downloader" page.
- Select Proper image version from the dropdown menu. If the dropdown menu shows "No valid images", it means you don't install proper MSI image packet or the CPC code is empty. Please check it and re-starting again.
- Make sure the COM port numbers in front of each progress bar can also be seen in device manager. Mark the selection button in front of each COM port number field to make sure user want to programming the phone connected to this port.
- Click "FLASH" button to start downloading.

- The progress bar will show the downloading progress and messages during downloading, please wait programming is completed when "Download Finished" message box pop-up and the progress bar color becomes green.
- Close tool by clicking "Exit" button.

Image Version	Must be chosen manually. It lists the image version that user installed on this
	computer and which version user wants to download to phone.
	"Select All" means select all connected phones.
	"Abort All" means abort all connected phones.
Format EEC	It's an option that formatting the phone file system without User Data
ronnat Ers	backup/restore during downloading.
Check Battery	It's an option that check connected battery level before starting downloading
	images into phone to protect downloading procedure.

	FLASH	Download	Control and Settings		
		j image ve	rsion : PN_3101B_GEN	<u> </u>	
	STOP	COM Por	t Control : 🔿 Select All 🔎	Abort All	
		Forma	at EFS		
	E×it	Check	Battery		
 Download Info	rmation	4			
□ 87	Idl	e		Idle	
□ 84	Idl	e		Idle	
	Idi	e		Idle	
	Idi	e		Idle	
	Idle			Idle	
	Idle			Idle	
	Idle			Idle	
	Idi	e		Idle	

Single download tool

- Power on phone and connected them to computer via USB cable.
- Make sure level 3 or RD level USB dongle is inserted into compute.
- Launch PST tool then select Single Download Tool by clicking "Single Downloader" button on "Downloader" page. Make sure the CPC is not empty on "Phone info" page before switching to "Downloader" page.
- Select proper images by clicking the button in back of the MainCode path, Language path and Flex Pack path fields. Make sure the selection button is selected in front of each image paths if user wants to download it.
- Make sure the COM port numbers in front of the progress bar can also be seen in device manager then clicking "FLASH" button to start downloading.
- The progress bar will show the downloading progress and messages during downloading, please wait programming is completed when "Download Finished" message box pop-up and the progress bar color becomes green.
- Close tool by clicking "Exit" button.

Dead Phone	Switch to dead phone revive function.		
Format EFS	It's an option that formatting the phone file system without User Data		
	backup/restore during downloading.		
Check Battery	It's an option that check connected battery level before starting downloading		
	images into phone to protect downloading procedure.		

	Image Path Setting	
FLASH	MainCode : C:\Docume	nts and Settings\All Users\Application Data'
	Language : C:\Docume	nts and Settings\All Users\Application Data
STOP	Flex Pack : C:\Docume	nts and Settings\All Users\Application Data
Exit	Image Version :	.
	Download Control and Settings	8
	🗖 Format EFS	🗖 Dead Phone
	Check Battery	CPC Code :
ownload Information	1	
		Idle

Died phone revive tool

- Power on phone into download mode and connected them to computer via USB cable.
- Make sure level 3 or RD level USB dongle is inserted into compute.
- Launch PST tool then select Died Phone Revive Tool by clicking "Died Phone Recover" button on "Device Select" dialog and user will be "Single Download Tool" is showed up.
- Mark "Dead Phone" selection button to switch to dead phone reviving function.
- Input valid and proper CPC code to enable dropdown menu. Select the proper image version as used on Bundle Download Tool then click "FLASH" button to start downloading.
- The progress bar will show the downloading progress and messages during downloading, please wait
 programming is completed when "Download Finished" message box pop-up and the progress bar color
 becomes green.
- Close tool by clicking "Exit" button.

Dead Phone	Switch back to Single Download Tool.		
Format EFS	If user do dead phone revive function, downloading procedure will force phone doing file system formatting whether user mark " Format EFS " selection button or not.		
Check Battery	It's an option that check connected battery level before starting downloading images into phone to protect downloading procedure.		

100	Image Path Setting	
FLASH	MainCode:	
	Language:	
STOP	☐ Flex Pack	
Exit	Image Version : PN_3101B_GEN	
	Download Control and Settings	
	Format EFS	18
	CPC Code	0558115
Download Information		
	Idle	

Nokia Customer Care

3 – BB Troubleshooting and Manual Tuning Guide

Table of Contents

Placement	
Placement-Main Bottom	3-4
Placement-Main Top	3-5
Placement–Sub	
Circuit	
Circuit– QSC6055 interface	
Circuit-QSC6055 memory and LCD interface	
Circuit-QSC6055 power output	3-8
Circuit–QSC6055 charge	
Circuit-QSC6055 peripheral interface	3-9
Circuit-Acoustic interface	
Circuit–S/B interface	
Trouble Shooting for BB part	
Initialization	
Keypad LED	
LCD BL	3-16
Vibrator	3-18
Speaker	
Headset	
Mic	
USB	
Charging	
Auto Booting	
Flashlight function	

List of Tables

Table 1 Power-on circuit performance specifications	-14
---	-----

List of Figures

Figure 2 High-level power sequences timing diagram	3-14
Figure 3 Backlight control table	3-16

Placement

Placement - Main Bottom

Placement - Main Top

Placement - Sub

Circuit

Circuit- QSC6055 interface

Circuit-QSC6055 memory and LCD interface

Circuit–QSC6055 power output

Circuit-QSC6055 charge

Circuit-QSC6055 peripheral interface

Circuit–Acoustic interface

Circuit–S/B interface

Flash LED Control

Trouble Shooting for BB part

Initialization

Figure 2 High-level power sequences timing diagram

Parameter	Parameter Comments		Тур	Мах	Units
treg1	Power-on event to first regulator enable ³	0	6	10	ms
t _{reg}	Delay between regulator turn-ons ⁴		0.122		ms
t settle	Regulator settling time ⁴		0.122		ms
t _{reset1}	Last regulator on to PON_RESET_N = H	10	20	30	ms
tpshold	PS_HOLD timeout	133	200	300	ms
treset0	PON_RESET_N = L to first regulator off	6.67	10	15	ms
t _{off}	Delay between regulator turn-offs ⁵	1.6	2	2.4	ms

Table 1 Power-on circuit performance specifications

Keypad LED

D801

D802

LCD BL

LCD_BL_DRV1	LCD_BL_DRV2	BackLight
0	0	OFF
0	1	ON(Bright)
1	0	ON(Brightest)

Figure 3 Backlight control table

Vibrator

1.00V/ 1.00V/	📕 🔐 0.0s (2.00t/ Stap F 🖬 (350t	👔 1.00%/ 📓 1.00%/ 📳 📲 🖉 0.0x 5.00%/ Stop f 🔡 35	504
VPH_PWR		VPH_PWR (ZOOM IN)	
VIB_DRV_N		VIB_DRV_N	
ΔX = -1.20000ms	1/3X = 833.33Hz 3Y(2) = -1.7000V	AX = -1 80000us 1/ AX = 555,56kHz 63(2) = -1.7000V	
Mode Source Z	X Y V YI C Y2 V1 Y2 1.100V 600.0mV V1 Y2	Mode Source X Y ○ XI O(s)))))))))))))))))))))))))))	

Speaker

Headset

Mic

USB

Charging

Auto Booting

Flashlight function

(This page left intentionally blank.)

Nokia Customer Care

4 – RF Troubleshooting

(This page left intentionally blank.)

Table of Contents

RF self tests in the calibration and test tool	4-5
General RF troubleshooting	4-6
Introduction to RF troubleshooting	4-6
RF key components	4-7
Hardware set up	4-8
General voltage checking	4-8
Receiver troubleshooting	4-9
Introduction to receiver (RX) troubleshooting	4-9
CDMA RX chain activation for manual measurement/WCDMA RSSI measurement	4-9
CDMA RX calibration fails in the VGA offset troubleshooting	4-10
Transmitter troubleshooting	4-13
General instructions for transmitter (TX) Troubleshooting	4-13
GPS troubleshooting	4-18

List of Figures

Figure 4 RF key components	4-7
Figure 5 Tuning concept with CMU200	4-8
Figure 6 Troubleshooting diagram: GPS	4-18

(This page left intentionally blank.)

RF self tests in the calibration and test tool

Context

Always start the troubleshooting procedure by running the calibration and test tool. If a test fails, please follow the diagram below.

Troubleshooting flow

General RF troubleshooting

Introduction to RF troubleshooting

Most RF semiconductors are static discharge sensitive

ESD protection must be applied during repair (ground straps and ESD soldering irons).

Pre-baking

These parts are moisture sensitive and must be pre-baked prior to soldering:

- PA U1201
- PA U1204
- GPS LNA U1001

Discrete components

In addition to the key-components, there are a number of discrete components (resistors, inductors and capacitors) for which troubleshooting is done mainly by visual inspection.

Capacitors: check for short circuits.

Resistors: check value with an ohm meter.

Note: In-circuit measurements should be evaluated carefully

Measuring equipment

All measurements should be done using:

• An oscilloscope for low frequency and DC measurements. Recommended probe: 10:1, 10Mohm//8pF.

- A radio communication tester including RF generator and spectrum analyzer, for example Rohde & Schwarz
- CMU200. (Alternatively a spectrum analyzer and an RF generator can be used. Some tests in this guide are not possible to perform if this solution is chosen).

Note: A mobile phone CDMA2000 transmitter should never be tested with full TX power (only it possible to perform the measurements in a good RF-shielded room). Even low power CDMA2000 transmitters may disturb nearby CDMA networks and cause problems to 3G cellular phone communication in a wide area.

Note: All measurements with an RF coupler should be performed in an RF-shielded environment because nearby base stations can disturb sensitive receiver measurements. If there is no possibility to use RF shielded environment, testing at frequencies of nearby base stations should be avoided.

Level of repair

The scope of this guideline is to enable repairs at key-component level. Some key-components are not accessible, i.e. not replaceable. Please refer to the list of Non replaceable RF components.

Note: If the RF shielding can is removed (for measurement or repair), it must always be replaced with a new one.

RF key components

Figure 4 RF key components

Hardware set up

Hardware requirements for tuning:

- PC (Windows 2000/XP)
- Power supply
- Product specific module jig
- Cables: RF cable and USB cable
- Signal analyzer (TX), signal generator (RX) and RF-splitter or one device including all.

Figure 5 Tuning concept with CMU200

General voltage checking

Steps

- 1. Set up the main board. The phone should be in **FTM** mode.
- 2. Check the following:

#	Signal name	Test point	Voltage
1	VREG_TCXO	C1009	2.85V
2	VPH_PWR	C1204	3.8V
3	VREG_RFRX1	C909	2.1V
4	VREG_RFTX	C902	2.1V
5	VREG_RFRX2	C919	2.1V

Receiver troubleshooting

Introduction to receiver (RX) troubleshooting

RX can be tested by making a phone call or in FTM mode. For the FTM mode testing, use Qualcomm software. The main RX troubleshooting measurement is RSSI reading. This test measures the signal strength of the received signal. For CDMA RSSI measurements, see CDMA RX chain activation for manual measurements.

CDMA RX chain activation for manual measurement

Prerequisites

Make the following settings in Qualcomm software and in the signal generator.

Setting	Band 0	Band 1	Band 15
Channel	384	600	425
Signal generator to antenna connector	881.52 MHz	1960 MHz	2131.25 MHz

CDMA RX calibration fails in the VGA offset troubleshooting

Cellular band

Test configuration: Sector power: -50 dBm (CH384) SA setting: 881.52 MHz, SPAN (5 MHz)

RF FTM Mode
Г ТХ Ов
BAND: CELL Band 1
Channel: 384 2
RX_dBm: 50 3
AGC:
DVGA_offset:
PDM: 100
PA(0n/Off):
Always press Cancel when finish!!
Start Sector power : -50 dBM (384CH)
SA setting : 881.52MHz, SPAN(5MHz)
U1000 In Out Orack U1000 & peripheral
(L1009/C1023) Oralit Check
Normal
/Out Check (C) 205(1208) F1201 & peripheral Grouit Check
Normal
IL < -4dB
/Out Check (L1208/L1103) Grouit Check
F1100 & peripheral
Gain > 10dB Rx SAW((1100) (1)/0ut Oreck (1)/0((1105)) Re-Cal OK? OK Cellular Rx OK!!!

PCS band

Test configuration: Sector power: -50 dBm (CH600) SA setting: 1960 MHz, SPAN (5 MHz)

	RF FTM Mode	
	□ TX 0n	
	BAND: CI PCS Band D	
	Channel: 600 2	
	FX_dBm: 50 3	
	AGC:	
	DVGA_offset:	
	FDM: 100	
	PA(On/Off):	
4	OK Cancel 5	
	Always prass Cancel when finish!!	
• •	Aiways press Cancer when minshi:	
	Test Configuration	
Start	SA setting : 1960MHz, SPAN(5MHz)	
U1000 In /Out Check (1 1000/C1022)	000 & peripheral Circuit Check	
(E1009/C1022)		
IL < -4dB		
F1202 In /Out Check	202 & peripheral	
(C1216/C1227)	Circuit Check	
IL < -4dB → U1	203 & peripheral	
SPDT(U1203) No		
(C1228/C1229)	J100 & peripheral Circuit Check	U100 & peripheral
Normal ▼ IL < -4dB	F1101 & peripheral	Circuit Check
INA In/Out Check No	Circuit Check	
(C1230/R1107)		Normal Re-Cal OK?
Normal Gain > 10dB	SPDT(U1104) IL < -4dB Rx SAW (F1101)	IL < -4dB OK
	(C1121/C1117) In/Out Check (L1114/L1105)	PCS Rx OK!!!
	\sim	

AWS band

Test configuration: Sector power: -50 dBm (CH425) SA setting: 2131.25 MHz, SPAN (5 MHz)

Transmitter troubleshooting

General instructions for transmitter (TX) Troubleshooting

Please note the following before performing transmitter tests:

- TX troubleshooting requires TX operation.
- Do not transmit on frequencies that are in use!
- The transmitter can be controlled in local mode for diagnostic purposes.
- Remember that re-tuning is not a fix! Phones are tuned correctly in production
 Note: Never activate the CDMA transmitter without a proper antenna load. Always connect a
 50 Ω load to the RF connector (antenna, RF-measurement equipment or at least a 2 W

dummy load); otherwise the CDMA Power amplifier (PA) may be damaged.

Cellular band

Test configuration: PDM value: 65 (CH384) SA setting: 836.52 MHz, SPAN (5 MHz) PA gain control: 0_PA_high_gain

PCS band

Test configuration: PDM value: 100 (CH600) SA setting: 1880 MHz, SPAN (5 MHz) PA gain control: 0_PA_high_gain

	F FTM Mode	
1		
	BAND: 1_PCS Band D 2	
	Channel: 600 3	
	RX_dBm: 50	
	AGC:	
	DVGA_offset:	
	PDM: 80 4	
	PA(On/Off): 0_PA_high_gain 5	
6	5	
× ×	OK Cancel	
	/	
A	lways press Cancel when finish!!	
	,	
	Test Configuration PDM value : 80 (600CH)	
Start	SA setting : 1880MHz, SPAN(SMHz) PA Gain Control : 0 PA high gain	
	Synth lock No.	
(C1223) Check	C1103 Check x 0.8V	
Yes	\sim —	
Tx SAW(F1203)	202.0	
(L1212/C1222)	Circuit Check	
Normal		
PAM(U1201) No	PA_ON signal No Switch(U1206)	
(C1222/C1215)	R1208/C1213 Check Check Phil (Phil) 2.5V/2.5V 2.6V 2.6V 2.6V 2.6V 2.6V 2.6V 2.6V 2.6	Circuit Check
Normal Gain > 10dB		
	a peripheral Circuit Check AN52	Repair
Out Check (L1200/C1221)	Normal Normal	
F1202 In/ Out Check	IL < 44B SP3T(U 1000) IL < 44B RF Col	
Normal (L1210/C1217) IL < -4dB	C1022/L1009	62) · · · · · · · · · · · ·
No,	F1202 & peripheral Circuit Check	

AWS band

Test configuration: PDM value: 100 (CH425) SA setting: 1731.25 MHz, SPAN (5 MHz) PA gain control: 0_PA_high_gain

Coupler

Test configuration: PDM value: MAX power for each band SA setting: 836.52/1880/1731.25 MHz, SPAN (5 MHz) PA gain control: 0_PA_high_gain

RF FTH Mode	RF FTH Mode	RF FTH Mole
P TX Os	1 tx On	1 000
BAND: 0 CELL Band > 2	BAND: 1 PCS Band 2	BAND: 2 AWS Band - 2
Channel Dia 3	Channel 409 3	Channel 425 3
RX_dDm: 00	RX_dBm:	RK_dBm: 52
AGC:	AGC:	AGC:
DVGA_uther	DVGA_other	DVGA offere
PALON/OR 0 PA_Nigh_gain •	PA(On/Off): J. PA, high_gain + 5	PA(on/Off): 0_PA_high_gain + 5
	6 OK Cascel	6 OK Cancel
7	7	7
Always press Cancel when finish!!	Always press Cancel when finish!!	Always press Cancel when finish!!
Chut	Test Configuration PDM value : max, power for	each band
		31.25MHz, SPAN(5MHz)
*		_gan1
Cellular Coupl	er No U1200 Repair	
01200 Ched		
↓ ακ		
Port causely		
U1202 Ched	U1202 Repair	
AWS Coupler	No Ul1205 Repair	
U1205 Check		
ток		
NUME	No. Uter a such such	
Level Check	Circuit Check	
\sim	Normal	
-15 ~	≠ +5dBm@max. power	
HDET OK!!!!]	

GPS troubleshooting

Figure 6 Troubleshooting diagram: GPS

Nokia Customer Care

5 – System Module Description

Table of Contents

Introduction	5-5
Phone description	5-5
System block introduction	5-5
The phone system block Diagram	5-6
Phone key components and placement	5-7
Energy management	5-9
Battery and charging	5-9
Normal and extreme voltages	5-10
USB	5-10
User interface	5-10
Display	
Backlight and illumination	
Flip open/close switch	5-11
Flashlight	5-11
Audio concept	5-11
RF description	5-12
Receiver (RX)	5-12
Transmitter (TX)	5-13
GPS	5-13
Technical specifications	5-14
Main RF characteristics for GSM and WCSMA band phones	5-14
Environmental conditions	

List of Figures

Figure 7 Main board, top side	5-8
Figure 8 Battery pin order	5-9
Figure 9 Battery connector	5-9
Figure 10 Audio block diagram	<mark>5-11</mark>

Introduction

Phone description

QSC6055 is the single-chip device baseband ASIC in the phone. It contains functionality for RF, MSM, and PM ICs.

System block introduction

QSC6055 System Module Description.

NOKIA Care

The phone system block Diagram

Phone key components and placement

Function	Description	Item Reference
Main board		
Sub board		
QSC6055	Single-chip, It contains for RF, MSM, and PM ICs	
Ear Jack	Ear Jack	J701
Hall sensor	Fold & unfold detect	U600
Filter	EMI/ESD	F600 / F601
Reset IC	auto power on detect	U800
OVP IC	Over voltage protection	U501
X-tal	32.768kHz	Y300
TCX0	19.2MHz	Y1000
SAW	TX AWS	F1205
SAW	TX PCS	F1203
SAW	TX CELL	F1200
РА	Dual band	U1201
РА	AWS	U1204
Coupler	PCS	U1202
Coupler	Cell	U1200
Coupler	AWS	U1205
connector	CDMA RF	ANS2
PAD	Vibrator	J300
GPS RF Connector	GPS	ANS1
SAW	GPS	F1001 / F1002
LNA	GPS	U1001
switch	Side key	J800 / J801
SAW	RX Cell	F1100
SAW	RX PCS	F1101
Duplexer	Cell	F1201
Duplexer	PCS	F1202
switch	RF	U1000
Duplexer	AWS	F1204
Filter	EMI/ESD	F700

Figure 7 Main board, top side

Energy management

Battery and Charging

BL-4B battery

The phone is powered by a 3-pole BL-4B 700 mAh battery. The three poles are named VBAT, GND and ID where the ID line is used to recognize the battery capacity. This is done by means of an internal battery pull down resistor 68Kohm

Figure 8 Battery pin order

The battery connector is a blade connector. It has three blades,

- VBAT (Battery voltage)
- GND (Ground)

• ID (Battery size indicator, The ID line is used to recognize the battery capacity by a BL-4B battery internal pull down resistor 68Kohm).

Figure 9 Battery connector

Charging

This phone is charged through the µUSB interface only (there is no separated connector for a charger), Support two charging mode for normal USB charging and two approved NOKIA chargers(AC-6 and DC-6) charging, Charging is controlled by energy management, and external components are needed to protect the baseband module against EMC, reverse polarity and transient frequency deviation.

Normal and extreme voltages

In the table below normal and extreme voltages are shown, when a BL-4B battery is used.

Table 2 Nominal voltages			
Voltage	Voltage [V]	Condition	
General	conditions		
Nominal voltage	3.8		
Lower extreme voltage	3.3		
Higher extreme voltage(fast charging)	4.1		
HW shutdown voltages			
Vmstr +	2.6±0.1	off to on	
Vmstr -	2.6±0.1	on to off	
SW shutdown voltages			
SW shutdown	3.2	In call	
Min operation voltage			
Vcoff +	3.4	off to on	
Vcoff -	3.3	on to off	

USB

In this phone the USB connector is the only physical connector, which means that the USB port is used both for data transfer as well as for charging. The USB 2.0 is supported with full speed (12 Mbps). It also supports hot swap, which means that USB devices may be plugged in/out at any time. This phone is provided with a specific connector for µUSB.

User interface

Display

In this phone, support dual display for internal LCD TFT Transmissive1.77" and external LCD FSTN Transflective 0.97", in the system, Display controller via EBI2 8bit data bus, display exclusive chip select pin to control the internal & external LCD.

Backlight and illumination

In this phone, Display backlight is common by internal LCD and external LCD, The light source comes from internal LCM, The LCM backlight control has 3 stages for off, dark and bright, the backlight is collocated MMI conditions to adjust the shading value.

Flip open/close switch

This is a fold phone that system wakes up, when close the cover. It is implemented with a hall sensors mounted on the main PCB and a magnet to put on B case housing. The hall detector output is active low (0V) and 1.8V when not active. This arrangement makes the phone able to detect - closed and open position.

Flashlight

Flashlight is support in the product. The external key design on front cover, external key need press more than 1.5s to turn the flashlight On and Off. Other flashlight has the ability to turn on while phone is off.

Audio concept

The functional core of the audio hardware is built in QSC6055.

QSC6055 provides an interface for the transducers. Integrated hands free (IHF) speakers are driven by D-class audio amplifier and negative charge pump for (HPH) headset.

There are audio transducers:

- 3 analog input (2 MIC input and 1 LINE_IN input)
- 1 EARPICE for handset
- 1 IHF (internal han
- 1 HPH for headset
- 1 LINE_OUT

Figure 10 Audio block diagram

Internal audio

The internal audio components are used in these modes

	Hand Portable Mode	Headset Mode	Hand Free Mode
MIC1	X		X
MIC2		Х	
LINE_IN			
EARPICE	X		
SPEAKER			X
LINE_OUT			
HPH_OUT		X	

RF description

Receiver (RX)

An analogue signal is received by the phone's antenna. The signal is converted to a digital signal and is then transferred further to the baseband (eg. to the earpiece).

The receiver functions are implemented in the QSC6055 RF block. Signals with different frequencies take different paths, therefore being handled by different components.

QSC6055 System Module Description

Transmitter(TX)

The digital baseband signal (eg. from the microphone) is converted to an analogue signal, which is then amplified and transmitted from the antenna. The frequency of this signal can be tuned to match the bandwidth of the system in use (eg. CDMA CELL band).

The transmitter functions are implemented in the QSC6055 RF block. Even though the CELL/PCS/AWS signals are sent via different components, the principles of the transmission is the same.

GPS

The QSC6055 performs gpsOne technology, and simultaneous- GPS architecture and Assisted- GPS and Standalone-GPS operating mode.

Technical specifications Main RF characteristics for CDMA phones

QSC6055 System Module Description

Parameter	Unit
Number of RF channels	CELL : 810
	PCS : 1200
	AWS : 900
Channel Spacing	CELL : 30kHZ
	PCS : 50kHZ
	AWS : 50kHZ

Environmental condition

Environmental Condition	Ambient Temperature	Notes
Normal Operation	-15 ℃+55℃	Specifications fulfilled
Reduced Performance	+55℃+70℃	Operational only for short periods
Intermittent or No Operation	-40℃15℃ and +70℃+85℃	Operation not guaranteed but an attempt to operate will not damage the phone.
No Operation or Storage	<-40℃ and >+85℃	No storage. An attempt to operate may cause permanent damage.
Charging Allowed	-15 ℃+55℃	
Long Term Storage Conditions	0℃+85℃	
Humidity and Water Resistance		Relative humidity range is 5 to 95%. Condensed or dripping water may cause intermittent malfunctions. Protection against dripping water has to be implemented (enclosure) mechanics. Continuous dampness will cause permanent damage to the module.

Nokia Customer Care

Glossary

DMA	Direct memory access
DP	Data Package
DPLL	Digital Phase Locked Loop
DSP	Digital Signal Processor
DTM	Dual Transfer Mode
DtoS	Differential to Single ended
EDGE	Enhanced data rates for global/GSM evolution
EGSM	Extended GSM
EM	Energy management
ЕМС	Electromagnetic compatibility
EMI	Electromagnetic interference
ESD	Electrostatic discharge
FCI	Functional cover interface
FPS	Flash Programming Tool
FR	Full rate
FSTN	Film compensated super twisted nematic
GMSK	Gaussian Minimum Shift Keying
GND	Ground, conductive mass
GPIB	General-purpose interface bus
GPRS	General Packet Radio Service
GSM	Group Special Mobile/Global System for Mobile communication
HSDPA	High-speed downlink packet access
HF	Hands free
HFCM	Handsfree Common
HS	Handset
HSCSD	High speed circuit switched data (data transmission connection faster than GSM)
HW	Hardware
I/O	Input/Output
IBAT	Battery current
IC	Integrated circuit
ICHAR	Charger current
IF	Interface
IHF	Integrated hands free
IMEI	International Mobile Equipment Identity
IR	Infrared
IrDA	Infrared Data Association

ISA	Intelligent software architecture
JPEG/JPG	Joint Photographic Experts Group
LCD	Liquid Crystal Display
LDO	Low Drop Out
LED	Light-emitting diode
LPRF	Low Power Radio Frequency
мси	Micro Controller Unit (microprocessor)
мси	Multiport control unit
MIC,	mic Microphone
MIDP	Mobile Information Device Profile
MIN	Mobile identification number
MIPS	Million instructions per second
ммс	Multimedia card
MMS	Multimedia messaging service
МТР	Multipoint-to-point connection
NTC	Negative temperature coefficient, temperature sensitive resistor used as a temperature
	sensor
ОМА	Object management architecture
ОМАР	Operations, maintenance, and administration part
Opamp	Operational Amplifier
РА	Power amplifier
PDA	Pocket Data Application
PDA	Personal digital assistant
PDRAM	Program/Data RAM (on chip in Tiku)
Phoenix	Software tool of DCT4.x and BB5
PIM	Personal Information Management
PLL	Phase locked loop
РМ	(Phone) Permanent memory
PUP	General Purpose IO (PIO), USARTS and Pulse Width Modulators
PURX	Power-up reset
PWB	Printed Wiring Board
PWM	Pulse width modulation
RC-filter	Resistance-Capacitance filter
RF	Radio Frequency
RF	PopPort™ Reduced function PopPort™ interface
RFBUS	Serial control Bus For RF

RSK	Right Soft Key
RS-MMC	Reduced size Multimedia Card
RSS	Web content Syndication Format
RSSI	Receiving signal strength indicator
RST	Reset Switch
RTC	Real Time Clock (provides date and time)
RX	Radio Receiver
SARAM	Single Access RAM
SAW	filter Surface Acoustic Wave filter
SDRAM	Synchronous Dynamic Random Access Memory
SID	Security ID
SIM	Subscriber Identity Module
SMPS	Switched Mode Power Supply
SNR	Signal-to-noise ratio
SPR	Standard Product requirements
SRAM	Static random access memory
STI	Serial Trace Interface
SW	Software
SWIM	Subscriber/Wallet Identification Module
TCP/IP	Transmission control protocol/Internet protocol
тсхо	Temperature controlled Oscillator
Tiku	Finnish for Chip, Successor of the UPP
тх	Radio Transmitter
UART	Universal asynchronous receiver/transmitter
UEME	Universal Energy Management chip (Enhanced version)
UEMEK	See UEME
UI	User Interface
UPnP	Universal Plug and Play
UPP	Universal Phone Processor
UPP_WD2	Communicator version of DCT4 system ASIC
USB	Universal Serial Bus
VBAT	Battery voltage
VCHAR	Charger voltage
VCO	Voltage controlled oscillator
VCTCX0	Voltage Controlled Temperature Compensated Crystal Oscillator
VCX0	Voltage Controlled Crystal Oscillator

RH-109 Glossary

Vр-р	Peak-to-peak voltage
VSIM	SIM voltage
WAP	Wireless application protocol
WCDMA	Wideband code division multiple access
WD	Watchdog
WLAN	Wireless local area network
XHTML	Extensible hypertext markup language
Zocus	Current sensor (used to monitor the current flow to and from the battery)

